八年级数学下册重难点培优: 勾股定理(翻折问题)

八年级数学下册重难点培优: 勾股定理(翻折问题)

  • 简介

    1.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,求△BDE的周长. 解:在Rt△ABC中,∵AC=6,BC=8,∠C=90°, ∴AB10, 由翻折的性质可知:AE=AC=6,CD=DE, ∴BE=4, ∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12, 2.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AD=8,AE=4,AB=6,求△EBF周长的大小. 解:设AH=a,则DH=AD﹣AH=8﹣a, 在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a, ∴EH2=AE2+AH2,即(8﹣a)2=42+a2, 解得:a=3. ∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°, ∴∠BFE=∠AEH. 又∵∠EAH=∠FBE=90°, ∴△EBF∽△HAE, ∴

八年级数学下册重难点培优: 勾股定理(翻折问题)