1、甲、乙两种木块的体积相同,它们的质量之比是3︰2,若把甲木块截去一半,乙木块截去四分之一,求: (1)甲乙两木块的剩余部分的密度之比; 解:已知甲、乙两种木块的体积相同,它们的质量之比是3:2, 则密度之比为:ρ甲:ρ乙=m甲V甲:m乙V乙=m甲m乙×V乙V甲=3:2 木块密度不变,即剩余两块木块密度不变,故它们的比值是3:2 (2)甲乙两木块的剩余部分质量之比。 解:设体积为V,那么甲剩余木块的体积:V甲=12V 乙剩余木块的体积:V乙=34V 甲剩余木块的质量:m甲'=ρ甲12V=12ρ甲V 乙剩余木块的质量:m乙'=ρ乙34V=34ρ乙V 甲乙两木块的剩余部分质量之比: m甲':m乙'=(12ρ甲V):(34ρ乙V)=12×43×32=1:1
